Active Sound Design – Abwägung zwischen Gestaltungsfreiheit und Ressourcenanforderung

Arnd Balger – Jeroen Lanslots – Markus Bodden

12. SYMPOSIUM AGGREGATE- UND ANTRIEBSAKUSTIK 28./29.06. 2023 in Magdeburg

Agenda

Introduction

Sound Design Methods

Sound Design Example: High Performance Car

Page 2 Unrestricted | © Siemens 2023 | 2023-06-28 | Siemens Digital Industries Software | 12. Symposium Aggregate- und Antriebsakustik

What is Active Sound Design?

Source: Youtube

Active sound design (ASD) is a *methodology* that, in addition to functional sound, generates meaningful sounds to be replayed in the vehicle (internal or external) in order to *improve sound quality* (internal) and to ensure pedestrians' safety (external).

Why adding sounds to the vehicle?

BECAUSE YOU MUST BECAUSE YOU CAN ENSURE PROTECT BRAND STRIVE UNIQUE REDUCE COSTS **BRAND VALUE** COMPLIANCE **REPUTATION** neosonic SIFMENS

Unrestricted | © Siemens 2023 | 2023-06-28 | Siemens Digital Industries Software | 12. Symposium Aggregate- und Antriebsakustik Page 4

A short history of Active Sound Design

Goal: generate sounds to support/build a dynamic driving sound

Innovators

- introduced for vehicles with Internal Combustions Engines (ICE), sound more sporty in spite of engine downsizing
- first usage for Electric Vehicles (EV) in 2013: Mercedes AMG SLS ED

Early adopters:

• next vehicles followed in 2018/2019 (ex. Jaguar I-Pace, Audi e-tron, Porsche Taycan...)

Next: Pushed by the legal requirements (AVAS)

Crossing the Chasm:

- today it is getting a standard for premium EV's: ex. KIA EV6
- High power sports cars take it to the limit \rightarrow exhaust sound

Active Sound Design vs Sound Quality

Sound Quality

- is a topic of research since decades
- several definitions of SQ are reported, a formulation can be:
 - sound have a task, and the fulfillment of that task needs to be evaluated
 - sound should be pleasant, not annoying

Context of Sound Quality of Active Sound Design

- the Audio Quality of the used sound generation methods
 → the used toolchain (technical skills)
- the result of the creative process → the individual esthetic process / capabilities (personal skills) – artistic process

neosonic

SIEMEN

How is the Design phase kicked off?

- From: Exploration within Auto OEMs
- over: evaluating sound samples to proof or reject preferences with customers
- to: rule-based approach to describe unique Brand Sound
- to: a *drivable sound*

Define design goals

- give **feedback** about the **current status** of the vehicle
- implement a "sound floor" and mask other component sounds which might be annoying

neosonic

- increase the interaction of the driver with the vehicle
- increase the emotional expression of the vehicle
- implement a Brand Sound
- allow personalization

Use freedom for EV's

- no basic prominent motor sound as for ICE
- the task is to build a sound from scratch
- the sound character needs to be designed
- different sound generation methods are available

Active Sound Design Tool Layout

Page 8 Unrestricted | © Siemens 2023 | 2023-06-28 | Siemens Digital Industries Software | 12. Symposium Aggregate- und Antriebsakustik

Agenda

Introduction

Sound Design Methods

Sound Design Example: High Performance Car

neosonic

SIEMENS

Page 9 Unrestricted | © Siemens 2023 | 2023-06-28 | Siemens Digital Industries Software | 12. Symposium Aggregate- und Antriebsakustik

Active Sound Design Methods

Sound generation needs to be coupled to dynamic vehicle parameters :

- ASD *is not playback* of a fixed musical composition
- sound generation must allow to precisely follow the dynamic vehicle parameters
- driver needs to get impression that the sound is generated by the car → authenticity

Requirements to synthesis methods?

- Many sound synthesis method possible, transferred from NVH, music creation, signal theory
- all methods have their specific pros and cons with regard to
 - the achievable sound character
 - the user interface / required user experience
 - required resources (MIPS, Memory)

Methods:

- Order-based synthesis
- Pitched sample playback
- FM synthesis
- Shepard tones
- Granular synthesis

Order-based synthesis

Category

analysis-related method – often analysis results are reproduced

Typical parameters

- Number of orders reproduced
- Order levels as a function of engine speed (and engine load)
- Order phases
- Randomization

Pros:

Cons:

- very predictable, defined by well understood parameters
- design approach is analytical, ICE knowledge based
- that single layer already allows variable sound
- resource-friendly with regard to memory needed

• the achievable sound character is limited

neosonic SIE

Pitched sample playback

Category

replication-related method – reproduce existing sound character

Typical parameters

- sample
- pitch at a function of dynamic control parameter

Pros:

Cons:

- most predictable method
- easy to reproduce desired or already existing sound features
- resource-friendly (MIPS)
- No deep Sound Design knowledge needed

- Static limited character change
- constraints to the sample need to be considered
- highest memory resources need of all methods: number and sizes of the samples for full sound is high

FM synthesis

Category					ĒHz
synthesizer style method, creative sound generation					1800
Typical parameters					- 170
 sample or base signal (or oscillator type) modulation frequency (frequencies) modulation index (indices) 					1500 1400 1300 1200
Pros:	Cons:				modulators
 common for users familiar with music synthesizers resource-friendly for memory (very short sound sample) resource-friendly for processing (MIPS) 	 rs familiar with ers a single layer typically is not sufficient Ressource requirements depending on the number of modulations stages 	basic waveform (sine 200Hz)	modulator A ratio	modulator B ratio	A+B cascaded 900 800 700 600 500 400
p					300 200 100

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500

<mark>n e o</mark> s o n i c

SIEMENS

Shepard synthesis

Category

specific add-on method – intended to complement other methods

Typical parameters

- number of components
- min and max frequency limits
- pitch shift slope

Pros:

Cons:

- efficient to keep low frequencies and include variability into the sound
- memory: resource-friendly with regard to memory
- Processing: resource-friendly with regard to MIPS

a single layer typically is not sufficient for variable and rich sound generation

neosonic SIEMEN

Granular synthesis

Category

design-related method – intends to create something new

Typical parameters

- sample
- pitch
- number of grains
- window function

Pros:

Cons:

•

- creation of rich, vivid and variable sounds
- creative design tool
- single layer already allows to create variable sound
- resource-friendly with regard to memory
- processing: only medium MIPS requirements

less predictable sound generation (which is not necessarily a con)

position and length random

grain position

grain length

values

 a single layer typically is not sufficient

neosonic SIEMENS

Choose your base character with your sound sample

Advanced ASD Concept

How to bring sound to the vehicle

All sound generation methods have their specific advantages and disadvantages

The selection of the used method depends on

- the targeted sound character
- the available resources on the mass production device
- the preferences and skills of the Sound Designer
- the tools available

Advanced ASD tools

- allow the usage of all sound generation methods
- Have a flexible layout of the signal flow to different preferences and vehicle types (EV, PHEV, HEV, ICE, ...)
- Use single application for both design in the studio, validation in the vehicle, tuning for vehicle fleet handling
- Provide a device independent sound generation to allow easy transfer from design to mass production

Agenda

Introduction

Sound Design Methods

Sound Design Example: High Performance Car

neosonic

SIEMENS

Page 18 Unrestricted | © Siemens 2023 | 2023-06-28 | Siemens Digital Industries Software | 12. Symposium Aggregate- und Antriebsakustik

High Performance vehicles Example: Hyundai N Brand

VEHICLE SEGMENT

- High Performance is next step above High Power cars
- Still have track ability (handling, power, durability, ...)

CUSTOMER SEGMENT

- car lovers, car enthusiasts
- like to go to the limits, of the car, of themselves
- head for extreme experiences

N vehicles need corresponding sounds:

- needs to be bold, can be out of conventions
- no blueprint for standard Evs
 - → challenge and big playground for Sound Design extreme expectations, extreme possibilities!

neosonic

SIEMENS

Nsound+ Concept – transfer the N heritage

ICE SPORTY SOUND CHARACTERISTICS

strong reaction to vehicle dynamics

• strong / peculiar load reaction

loud sound level

 super sport cars are very loud (interior and exterior)

complex sound

- various sound components audible
- strong roughness with engine load
 - sound attributes in contrast to comfort

"dirtiness"

• untamed, "wild" sound (of a beast)

transmits endless power

• even at low load dense sound, always on a jump and can stand any attack

own special character, not mainstream

- super sport cars are not always easy to handle. the sound reflects that
- no uniform sound, some un-refined sound components
- no compromise
- attributes like 'brute'

nmics transfer of ICE sport attributes to the EV domain (interpretation, 'le not 1:1 transfer!) ad fort

BEV SPORTY SOUND CHARACTERISTICS

strong reaction to vehicle dynamics

strong / peculiar load reaction to be generated

loud(er) sound level

 super sport BEVs do not need to deliver the same level since generation is not bound to mechanics (only when needed)

complex sound

various sound components to be generated

strong roughness with engine load

apply roughness and modulation on load

"dirtiness"

special sound treatment required

transmits endless power

• to be considered for sound character definition

own special character, not mainstream

- add more amount of randomness than for standard BEVs
- more randomness, to be considered in sound manipulation

- to be considered in sound definition/design
- "

Added sounds for complete experience

IDLE REVS

- a typical "display" mode for HP vehicles is to rev up in standstill
- this by default is not included in EVs as the motor rpm is 0 in standstill, a virtual rpm can be used to enable idle rev-ups
- > a very easy method to increase driver involvement and "fun"

IDLE RANDOMNESS

- HP ICE engines run quite agitated and not smooth, indicating that the engine is eager to take of
- synthesis methods are very monotonic if CAN parameters are static, to overcome this randomness can be overlayed
- effective method to increase authenticity

EXTERIOR SOUND

Motivation

- exterior sound plays an important role for high performance veh.
- For HP ICE vehicles the dominating sound source is the exhaust
- this strongly impacts the interior sound and creates an immersive experience to the driver

> exterior sound needs to be considered for HPEVs, too

But keep in mind

- Added exterior sound is a controversial topic as it affects also the surroundings and thus becomes a society topic
- Therefore mainly used in track modes for driving on racing grounds, the driver can deactivate exterior sound

Vehicle implementation

- derivate of the interior sound, transforming for example the portions of the sound of an exhaust system and/or an intake
- design and generation of interior and exterior sound happens aligned, to speeds up the design phase and to avoid interferences

Added sounds for complete experience

RECUPERATION:

- new feature introduced by EVs
- much stronger impact than engine brake for ICEs
- dynamics play an important role for high performance vehicles the recuperation sound is more important than for standard EVs.
- Acoustic feedback allows to handle the vehicle in a better way!

Event Sounds: ADDITIONAL SOUND COMPONENTS

Specific <u>kickdown sounds</u>, express that extreme driving condition

• additional sound generation layer or dedicated after-processing

Level overshoots at specific events

• drive mode change, sound feedback for dynamic actions

Virtual rpm overshoots at events like simulated gear shifts

• simulates slight slips which occurs at clutch systems

Virtual misfires

• triggered by logics calculated in the vehicle ECU

Specific <u>feedback signals</u> or signal modifications for other events

• basically any dynamic action of the vehicle can be represented

N e-Shift (Virtual Gear Shift)

The absence of multiple gears of EVs results in a more monotonic undynamic sound, this can be broken up by virtual gear shifts.

Pure acoustic presentation can result in a mismatch of other sensory perception and thus reduce authenticity.

Hyundai developed the N e-shift technology to overcome this

- gear shifting events determined based on an internal vehicle model
- the requested motor torque is manipulated to introduce tactile/vibrational feedback

The implementation significantly increases perceived variability and driver involvement

Vehicle Implementation

- Sound generation on separate DSP device
- communication to the audio system via A2B
- usage of the interior speakers
- exterior speakers in front and rear
- OTA ability
- customization by user via the AVN

Experience the sound of Hyundai RN22e

https://www.youtube.com/watch?v=dffQyt1yJiQ

Virtual gear shift from 7:45

Idle noise at 12:52

Impress your co-pilot from 14:30

Listen to this! You pull up somewhere and do

Conclusions

- The process to design sounds redefines and extends the definition of Sound Quality
- Automotive sounds are no longer only shaped, but synthesized and composed
- A variety of different sound generation methods are available, with pro's/ cons's/ constraints

neosonic

SIEMENS

• Unlimited choice of sound characteristics

Thank you for your attention

arnd.balger@siemens.com

Page 27

